Johnson Matthey Inspiring science, enhancing life

Backpressure Prediction for Flow Through Monoliths and Wall Flow Filters Using 1 Dimensional Models: Entrance Effect Pressure Change, Developing Flow and Validation Using Length Varying Techniques

Tim Watling, Yolanda Van Lishout, Ian Rees

JM

25th February 2022, UK Fluids Network SIG on Particulate Matter Filtration Flows

Objective

Open Questions on Backpressure Prediction for Monoliths and Particulate Filters

- Aim to address a number of open questions on backpressure prediction for Flow-Through Monoliths (FTM) and Particulate Filters (PF) using 1-D models:
 - No agreement on equation for pressure drop due to flow contraction at FTM or PF entrance
 - How should friction factor correlations for developing flow in FTM be combined with an equation for flow contraction pressure loss to predict backpressure across an FTM?
 - How to discriminate between different PF models from literature?
 - Should developing flow be included in PF models?

Published: Watling, Van Lishout, Rees, Emiss. Control Sci. Technol. 7, 247–264 (2021) Sharing link: <u>https://rdcu.be/czUhG</u>

Methods / Techniques

How are we going to answer the questions

- Use three methods:
 - 1) CFD simulations
 - 2) Backpressure measurements on monolith cut to different lengths
 - 3) Backpressure measurements on particulate filters cut to different lengths

- Varying length of part helps with separating different contributions to backpressure
 - Although more complicated with filters than monolith

CFD Simulations

JM

CFD Simulations

- Simulate flow in square channel with upstream flow contraction
 - Model for flow encountered in flow-through monolith
 - Investigate the effect of:
 - Gas velocity
 - Contraction ratio
- Enables us to:
 - Verify pressure change due to flow contraction at part entrance
 - Look at the impact of developing flow
 - Consider how upstream contraction affects developing flow in channel
 - Friction factor correlations typically assume flat velocity profile at channel entrance
 - But this does not exist when there is an upstream flow contraction

Simulations

- CFD simulations run using Comsol Multiphysics[®]
 - Geometry consists of square channel with upstream contraction
 - Simulations run for:
 - Two flow rates
 - 4 contraction ratios, plus the case without an upstream contraction

Contraction ratio, Area for flow after contraction Area for flow before contraction

Pressure Drop Due to Flow Contraction

- During flow contraction at monolith/filter entrance:
 - Flow contracts down to vena contracta, narrower than channel
 - Then flow expands to fill channel
- Derive equation for pressure change assuming [2,5]:
 - Conservation of mechanical energy to vena contracta
 - Conservation of momentum over expansion

•
$$\Delta P_{entr} = \left[2\alpha_{i0} - \alpha_{e,up}\sigma_{i0}^2 - \frac{2}{C_{ci}} + \frac{1}{C_{ci}^2} \right] \frac{\rho V_{i0}^2}{2}$$

- α_{i0} is momentum flux correction factor
 - Serves to correct ρV^2 to give momentum flux along channel

• $\alpha = \frac{\langle u_z | u_z | \rangle}{\langle u_z \rangle^2}$

Figure reused with permission of SAE International from [2] © 2017; permission conveyed through Copyright Clearance Center Inc.

 C_{C} =Coefficient of contraction V=Mean channel velocity α =Momentum flux correction factor α_{e} =Kinetic energy flux correction ρ =Fluid density σ_{i0} =Contraction ratio

Handling Backpressure Contribution Due to Accelerating Gas Flow to Laminar Flow Profile

- One contribution to backpressure for gas entering channel is force required to accelerate gas flow in channel to laminar flow profile
- If:
 - 1) Assume flow in channel always fully developed
 - Include this contribution with contraction pressure loss by using α_{i0} for laminar flow
 - 2) Account for developing flow in channel
 - Use friction factor correlation that accounts for developing flow
 - This includes contribution for force required to accelerate gas to laminar flow profile
 - Equation for flow contraction should just take gas to flat velocity profile, i.e. $\alpha_{i0} = 1$

Some Maths...

Dimensionless pressure and axial coordinate

- Pressure drop at distance z along channel, P_z , is given by:
 - $P_{up} P_z = \left(\zeta_0^F + f_{app} \frac{4z}{d}\right) \frac{\rho V^2}{2}$
- Divide by $\frac{1}{2}\rho V^2$ and rearrange gives:
 - $P_z^* P_{up}^* + \zeta_0^F = -4f_{app}Rez^+$
- From this equation, if $f_{app}Re$ is a function of z^+ only, then a plot of $P_z^* P_{up}^* + \zeta_0^F$ versus z^+ will always fall on the same line for $0 \le z \le L$ irrespective of contraction ratio or flow rate
 - Not entirely true close to the contraction, but works otherwise

 P_{up} =upstream pressure; P_z =pressure at z; z=axial coordinate; ζ_0^F =pressure drop due to contraction, taking fluid to a flat velocity profile; f_{app} =apparent friction factor; d=width of channel; p=fluid density; V=mean gas velocity in channel; P*=P/½pV²=dimensionless pressure; Re=dpV/µ=Reynolds number; z⁺=z/dRe=dimensionless axial coordinate

Offset Dimensionless Pressure Versus Dimensionless Coordinate All results line up when plotted this way, once away from the contraction

- Differences in pressure profile around the channel entrance due to contraction
- But once away from the contraction, all results fall on same line

JM

Figures first published in [1] by Springer Nature. \odot The Authors, under exclusive license to Springer Nature AG 2021.

Conclusions from Dimensionless Pressure Drop Plot Consequences for backpressure prediction in flow-through monoliths

- If nondimensionalise pressure and axial coordinate and offset by pressure change due to flow contraction, all results fall on same curve away from contraction
 - For 2 flow rates and 5 contraction ratios (including no contraction)
- From this conclude:
 - Equation we are using for pressure drop due to contraction is correct (equation validated \odot)
 - Can predict pressure drop by combining correlation for developing flow starting with a flat velocity profile with an equation for pressure drop for contraction taking the flow to a flat velocity profile
 - There is no need to include a viscous contribution to contraction pressure drop
 - At least for the (relatively high) flow rates considered
 - Unlike what Cornejo et al. found [3,4]
 - While contraction affects pressure close to contraction, overall pressure drop unaffected
 - Unlike what Cornejo et al. found [3,4]

Flow-Through Monolith Backpressure

Backpressure Measurements on Flow-Through Monolith Effect of varying monolith length

- Measure backpressure of uncoated monolith, then progressively shorten part and remeasure backpressure
 - Gives backpressure as a function of length
 - Allows separation of along-channel pressure drop and pressure drop due to flow contraction into the part
 - As inlet pressure fixed (atmospheric) and exit pressure change zero (infinite expansion), equivalent to measuring pressure along channel
- Use SuperFlow[®] for measurements (cold flow)
- 400/3.5, 4.66 in diameter monolith

Backpressure Prediction Equations

- Assume incompressible flow
- Along channel pressure drop:

•
$$\Delta P_{FTM} = \frac{F \mu \phi L}{d^2 \rho}$$

Pressure drop due to flow contraction at entrance:

•
$$\Delta P_{entr} = \left[2\alpha_{i0} - \alpha_{e,up}\sigma_{i0}^2 - \frac{2}{C_{ci}} + \frac{1}{C_{ci}^2} \right] \frac{\rho V_{i0}^2}{2}$$

- d=Hydraulic diameter of channel F=Viscous loss coefficient L=length of monolith V=Mean gas velocity α =Momentum flux correction factor α_e =Kinetic energy flux correction μ =viscosity ρ =Fluid density σ_{i0} =Contraction ratio σ_{oL} =Expansion ratio
 - ϕ =Mean mass flux in channel

Figure reused with permission of SAE International from [2] © 2017; permission conveyed through Copyright Clearance Center Inc.

• Depending on value of α_{i0} , can take flow to flat profile or developed laminar flow profile

Vena contracta

• Pressure change due to flow expansion at exit:

•
$$\Delta P_{exit} = \sigma_{oL} (\alpha_{dwn} \sigma_{oL} - \alpha_{oL}) \rho V_{oL}^2$$

Contraction & expansion equations from [2,5]

Effect of Length on Monolith Backpressure

Points: Measured data Lines: Model prediction

Model predictions for always-developed flow (left) & accounting for developing flow (right)

- Validates equation for flow contraction into monolith
- At lower flow rates (Re≤700), can assume flow always fully developed (left plot)
- Use of Gundlapally & Balokotiah [6] developing flow correlation improves prediction at higher flow
 - Model under predicts at very high flows (right plot)

Figures first published in [1] by Springer Nature. © The Authors, under exclusive license to Springer Nature AG 2021.

Summary: Cut-Monolith Backpressure Data

- Backpressure of monolith measured as function of length by progressively shortening the part
- Allows backpressure contributions of along-channel pressure drop and entrance & exit effects to be separated
 - Improved model validation
- At low flow rates, can assume flow always developed, but at higher flows need to include the effect of developing flow
- Gundlapally & Balakotaiah friction factor correlation for developing flow works well

Particulate Filter Backpressure Prediction

JM

Validation of Particulate Filter Backpressure Prediction

- Measure backpressure of uncoated filter, then progressively shorten part and remeasure backpressure
 - After first cut have partial filter by testing in both orientations double available data
- Full and partial filters are governed by the same differential equations
 - Just with different boundary conditions
 - So can use data also to validate model for full filter
- Use SuperFlow[®] for measurements (cold flow)
 - Expansion pressure change zero as effectively infinite expansion
- 292/10, 5.66×10in SiC filter

Full and Partial Particulate Filters: Nomenclature

Full Particulate Filter

Partial Particulate Filter, Unplugged Front Face

Partial Particulate Filter, Unplugged Rear Face

 Label channels "inlet" or "outlet" according to the situation if the "missing" plugs were replaced

Figure first published in [1] by Springer Nature. © The Authors, under exclusive license to Springer Nature AG 2021.

Filter Backpressure Models

Will compare the prediction of four different filter models

Standard model:

•
$$\frac{\partial P_i}{\partial z} = -\frac{\alpha_i}{d_i^2} \frac{\partial d_i^2 \phi_i^2 / \rho_i}{\partial z} - \frac{F_i \mu_i \phi_i}{d_i^2 \rho_i}$$
 $\frac{\partial P_o}{\partial z} = -\alpha_o \frac{\partial \phi_o^2 / \rho_o}{\partial z} - \frac{F_o \mu_o \phi_o}{d_o^2 \rho_o}$

- Vega Mesquida el al. [7] model uses same equations but with different values for F & a
- Bissett et al. [8] model uses same equation but with Re_W dependent F & a
- Model proposed in Watling et al., SAE 2017-01-0974 [2]:

•
$$\frac{\partial P_i}{\partial z} = -\frac{\alpha_i \phi_i}{d_i^2} \frac{\partial d_i^2 \phi_i / \rho_i}{\partial z} - \frac{F_i \mu_i \phi_i}{d_i^2 \rho_i} \quad \frac{\partial P_o}{\partial z} = -\alpha_o \phi_o \frac{\partial \phi_o / \rho_o}{\partial z} - \frac{F_o \mu_o \phi_o}{d_o^2 \rho_o}$$

Equations for pressure change due flow contraction & expansion extended to cover the unplugged faces of partial filters [1]

Comparison of Backpressure Prediction for Different Models

Permeability optimised for each model using data for two lowest flow rates

- All models look much the same at 207 $m^3 h^{-1}$
 - Watling et al. slightly different with unplugged rear
- Bisset et al. model only valid for Re_w<3 only true for 207 m³ h⁻¹ for rear face unplugged
 - Hence, only show simulated data for 207 m³ h⁻¹
- Poor prediction for Watling et al. model
 - Backpressure higher for unplugged front face
 - This model predicts the opposite
 - Therefore this model can be rejected
- Other models look much the same at 413 m³ h^{-1}
- No model gives a good prediction at 617 m³ h⁻¹
 - Perhaps assuming developed laminar flow incorrect

Modelling Developing Flow in Filters **Defining a dimensionless distance for wall-flow filters**

- Correlations for developing flow for monoliths in terms of dimensionless distance, z⁺:
 - $z^+ = \frac{z}{dRe}$
 - This definition doesn't work for filters as Re varies along channels
- For filters, define dimensionless distance as:

•
$$z_{i,l}^+ = \sum_{j=1}^l \frac{z_j - z_{j-1}}{d_i R e_{i,j}}$$
 $z_{o,l}^+ = \sum_{j=1}^l \frac{z_j - z_{j-1}}{d_o R e_{o,j}}$

• Divide channel up into a series of axial elements. Use values for these elements in summation

Demonstration That Dimensionless Distance Definition Works Use CFD results from Cooper et al. [9]

- Plot F_i and a_i calculated from CFD against z_i^+ for 3 values of Re
- Predicted points line up for front of filter, where impact developing flow important
 - No correlation at rear of part where wall flow is important

Figure first published in [1] by Springer Nature. © The Authors, under exclusive license to Springer Nature AG 2021.

Models Including Developing Flow

Model 1
$$\alpha_D = 1 + \frac{0.378}{1+0.004210(z^+)^{-2}}$$
Model 2 $\alpha_D = 1 + \frac{0.378}{1+0.001487(z^+)^{-2}}$, $F_i = F_o = 26.613$ Model 3 $\alpha_D = 1 + \frac{0.378}{1+0.005391(z^+)^{-2}}$, $F_D = 27.779 - \frac{3.216}{1+0.0001720(z^+)^{-2}}$

- Equations for F and a as functions of dimensionless distance
- This only applies to channels unplugged at the front face
- Form of equations taken from monolith friction factor correlation of Shah & London [10]

Comparison of Models Including Developing Flow

- All models give much the same prediction for the two lower flows
 - Expected as impact of developing flow only significant at higher flow
- Model including developing flow show some advantage over "standard" model, but none is perfect
 - More work required
 - Perhaps there is a limit to the range of flow rates at which a 1-dimension model would work

All models use same permeability

Summary: Cut Filter Backpressure Data

- Generate data for validating filter model by measuring backpressure after repeatedly shortening part
 - After first cut, have partial filter
 - Test part in both orientation backpressure higher when front face unplugged
- As full and partial filters governed by same differential equations, can use data for partial filter to validate model for full filter
- Method enables model discrimination
- None of models tried works really well at really high flow
 - Have tried models including developing flow
 - This improves prediction, but prediction is far from perfect

Conclusions

JM

Conclusions

- A number of aspects of backpressure prediction for Flow-Through Monoliths (FTM) & Filters (PF) investigated:
 - Equation for pressure drop due to contraction validated against CFD and experimental data
 - Good backpressure prediction for FTM by combining equation for contraction to flat velocity profile and developing flow friction factor correlation assuming flat velocity profile at channel entrance
 - Backpressure data for partial PFs can be used to validate balance equations for full PF and to discriminate between models
 - Progress made on including developing flow in PF model; more work required

Published: Watling, Van Lishout, Rees, Emiss. Control Sci. Technol. 7, 247–264 (2021) Sharing link: <u>https://rdcu.be/czUhG</u>

JM tim.watling@matthey.com

References

- T.C. Watling, Y. Van Lishout, I.D. Rees, "Backpressure Prediction for Flow-Through Monoliths and Wall-Flow Filters Using 1-Dimensional Models: Entrance Effect Pressure Change, Developing Flow and Validation Using Length-Varying Techniques," Emiss. Control Sci. Technol. 7, 247–264 (2021)
- T.C. Watling, M.R. Ravenscroft, J.P.E. Cleeton, I.D. Rees, D.A.R. Wilkins, "Development of a Particulate Filter Model for the Prediction of Backpressure: Improved Momentum Balance and Entrance and Exit Effect Equations", SAE Int. J. Engines 10, 1765-1794 (2017)
- 3. I. Cornejo, P. Nikrityuk, R.E. Hayes, "Pressure correction for automotive catalytic converters: A multi-zone permeability approach," Chem Eng Res Res Dev 147, 232-243, (2019)
- 4. I. Cornejo, P. Nikrityuk, R.E. Hayes, "The influence of channel geometry on the pressure drop in automotive catalytic converters: Model development and validation," Chem Eng Sci 212, Article 115317 (2020)
- 5. W.M. Kays, "Loss Coefficients for Abrupt Changes in Flow Cross Section With Low Reynolds Number Flow in Single and Multiple Tube Systems," Trans ASME 72, 1067-1074 (1950)
- 6. S.R. Gundlapally, V. Balakotaiah, "Heat and mass transfer correlations and bifurcation analysis of catalytic monoliths with developing flows," Chem. Eng. Sci. 66, 1879-1892 (2011)
- 7. I.M. Vega Mesquida, I. Cornejo, P. Nikrityuk, R. Greiner, M. Votsmeier, R.E.Hayes, "Towards a fully predictive multi-scale pressure drop model for a wall-flow filter," Chem. Eng Res. Des. 164, 261-280 (2020)
- 8. E.J. Bissett, M. Kostoglou, A.G.Konstandopoulos, "Frictional and heat transfer characteristics of flow in square porous tubes of wall-flow monoliths," Chem. Eng. Sci. 84, 255-265 (2012)
- 9. J.D. Cooper, L. Liu, N.P. Ramskill, T.C. Watling, A.P.E. York, E.H. Stitt, A.J. Sederman, L.F. Gladden, "Numerical and experimental studies of as flow in a particulate filter," Chem. Eng. Sci. 209, Article 115179 (2019)
- 10. R.K. Shah, A.L. London, "Laminar-flow forced convection in ducts," Academic Press, New York (1978)